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Characterizations are given of when the metric projection P,, onto a proximal
subspacc M has a continuous, pointwise Lipschitz continuous, or Lipschitz con-
tinuous sclection. Morcover, it is shown that if Py, has a continuous sclection, then
it has one which is also homogeneous and additive modulo M. An analogous result
holds if P,, has a pointwise Lipschitz or Lipschitz continuous sclection provided
that M 1s complemented. If dim M <« and P, is Lipschitz (resp. pointwise
Lipschitz) continuous, then P,, has a Lipschitz (resp. pointwise Lipschitz) con-
tinuous selection. A conjecturc of R. Holmes and B. Kripke {Michigan Math. J. 18
(1968), 225-248) is resolved. £ 1989 Academic Press, inc.

1. INTRODUCTION

A (linear) subspace M of a normed linear space X is called proximinal
(resp. Chebyshev) if, for each x € X, the set of “best approximations” to x
from M,

Pulx):={yeM||x—yi= inf lx—mllt, (L.1)

is nonempty (resp. 4 singleton). For example, any finite-dimensional
subspace or any closed subspace in a reflexive space is proximinal, and a
proximinal subspace in a strictly convex space is Chebyshev. Throughout
the sequel, M is assumed to be proximinal. The set-valued mapping
P, X — 2™ thus defined is called the metric projection onto M. A selection
for P,,, or a metric selection for M, is any function p: X - M such that
p(x)e P, (x) for all xeX. In this paper, we are mainly interested in
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selections which are also continuous, pointwise Lipschitz continuous, or
Lipschitz continuous. (Conditions under which linear selections exist have
been extensively studied in [2] and [9].) For much of what is known
about these problems, the reader may consult the surveys [37] and [13].

Since we have to deal with set-valued mappings other than metric
projections, we give the main definitions for a general set-valued map.

Let X and Y be (real) normed linear spaces and F: X — #(Y), where
H#(Y) denotes the collection of all nonempty, closed, bounded, and convex
subsets of Y. F is said to be homogeneous if

Flax)=oF(x), xeX, aeR. (1.2)
F is called bounded if there is a constant ¢> 0 such that
sup{l|lyll [yeF(x)}<clxl, xeX (1.3)

For example, if M is a proximinal subspace of X, then it is well known that
P, X— (M) and P, is homogeneous and bounded with constant ¢=2.
Moreover, P,, is “additive modulo M.” That is,

Pyx+m)=P(x)+m (1.4)

for all xe X, me M.
The Hausdorff metric h on #(Y) is defined by

h(A, B) := max{sup d(a, B), sup d(b, A)},
aed beB
where d(x, A):= inf{|x—a| |aeA}. The mapping F:X-#(Y) is
pointwise Lipschitz continuous if for each xe X there exists a constant
A(x)> 0 such that

h(F(x), F(y) <Ax) x—pl,  yeX (1.5)

If in this definition the same constant A works for all xe X, F is called
Lipschitz continuous. F is called uniformly continuous if for each ¢ > 0 there
exists 6 >0 so that A(F(x), F(y)) <& whenever x, y in X and [x— y| <4.
F is called lower semicontinuous at xe X if x,— x and ye F(x) implies
d(y, F(x,)) - 0.

A selection p for P,, is said to be homogeneous or additive modulo M
if it has this property regarded as a singleton-valued mapping, i.e.,

plox)=ap(x), xeX,aeR (1.6)

or
plx+m)=p(x)+m, xeX, meM. (1.7)



METRIC SELECTIONS IN LINEAR SPACES 269

Finally, the kerne! of the metric projection P,, is the set

ker Py i= {xe X |0e Py,(x)}.

We can now outline some of the main results of this paper. In Section 2,
it is noted that if P,, is Lipschitz (pointwise Lipschitz) continuous, then it
admits a selection with the same property (Corollary 2.4). A conjecture of
Holmes and Kripke [8] is also resolved.

In Section 3, characterizations are given for when P,, has a continuous
(resp. pointwise Lipschitz continuous, Lipschitz continuous) sclection
which is homogeneous and additive modulo M (Theorem 3.3). Also, it is
shown that P,, has a continuous selection if and only if P, has a
continuous selection which is homogeneous and additive modulo ¥
(Theorem 3.4). If M is complemented, then P,, has a Lipschitz (resp.
pointwise Lipschitz) continuous selection if and only if it has a selection of
the same type which is homogeneous and additive modulo M
{Theorem 3.5). A characterization is given of the proximinal subspaces of
finite codimension which have continuous metric selections (Theorem 3.7).
In the particular case when M is Chcbyshev, a result of Cheney and
Waulbert [1] is recovered (Corollary 3.10).

2. LipscHiTZ CONTINUOUS METRIC PROJECTIONS

Our first observation is that Lipschitz continuity and uniform continuity
are the same for a certain class of set-valued mappings which include
metric projections.

2.1. PROPOSITION. Let F: X — A (Y) be bounded and homogeneous. Then
the following statements are equivalent:

(1} Fis Lipschitz continuous,

(2) F is uniformly continuous.

Proof. (1)=-(2) is obvious.

(2)=(1). Assume F is uniformly continuous. Then there exists § > (
such that

h(F(x), F(»))<1=6"1
whenever |x — y|| < 4. Setting .= ', we see that

h(F(x), F(y)) < 26
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whenever || x — y|| <. For any x, y in X with x # y, set

5o éx .oy
RS MR
Then |[X — §| =0 implies
h(F(X), F(§))<Ad=1||%— 7. (2.1.1)

By the homogeneity of F and the positive homogeneity of 4, we see that

Y 5
ME), F) = R, =2 FO)
= h(F(x), F(y))
e
NI p), ROy (2.12)
Xyl

From (2.1.1) and (2.1.2) there follows
h(F(x), F(y)) <4 |x—yl.

Thus F is Lipschitz continuous. |

2.2. COROLLARY. If M is a proximinal subspace of X, then P, is
Lipschitz continuous if and only if P, is uniformly continuous.

Remark. In the particular case that M is a Chebyshev subspace, this
corollary was established by Holmes and Kripke [8] by a similar
argument.

If the metric projection onto a finite-dimensional subspace is (pointwise)
Lipschitz continuous, then it admits a selection with the same continuity
property. This is a consequence of the following more general result.

2.3. PROPOSITION. Let Y be a finite-dimensional subspace of X and
F: X > #(Y). If Fis Lipschitz (resp. Pointwise Lipschitz) continuous, then
F has a selection which is Lipschitz (resp. pointwise Lipschitz) continuous.

Remark. Proposition 2.3 was proved by Przeslawski [14] and
Dommisch [5] in the case where F is Lipschitz continuous and Y= R". In
general, by using the Steiner point [15] of a compact convex set in R”, we
can easily prove Proposition 2.3. Here we outline only the idea of the proof
since the details are readily verified.
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Let dim Y=n and let ¢ be the isomorphism between Y and R". Let
o: #(R") - R" denote the “Steiner map” [15]). Then s=¢ 'co:cp-Fisa
Lipschitz (resp. pointwise Lipschitz) continuous selection of F. Moreover,
we have

Is(x) s <l 'l -n-fol - 2(x) Ix— yl

for all x, y€ X, where A(x) denotes the Lipschitz constant of F at x.
The first author is indebted to Joram Lindenstrauss for introducing him
to Steiner points which resulted in Proposition 2.3.

2.4. COROLLARY. Let M be a finite-dimensional subspace of X. If P, is
Lipschirz (resp. pointwise Lipschitz) continuous, then P,, has a selection
which is Lipschitz (resp. pointwise Lipschitz) continuous.

Holmes and Kripke [8] made the following conjecture.

ConJeCTURE. If X is strictly convex and reflexive and there cxists a
constant 2> 0 such that for each closed convex set K in X,

IPx(x)—Pr(yI <zllx—»1  (x, yeX) (*)

then X must be isomorphic to Hilbert space.

The next theorem and corollary show in particular that the
Holmes- Kripke conjecture is true. In fact, it is true under somewhat
weaker hypotheses.

2.5. THEOREM. Let X be a reflexive Banach space and suppose that the
metric projection onto each closed subspace has 4 Lipschitz continuous metric
selection. Then X is isomorphic to Hilbert space.

Proof. By a result of Lindenstrauss [10, Corollary 1 of Theorem 31,
each closed subspace must be complemented. By the complemented sub-
space theorem of Lindenstrauss and Tzafriri [11], the result follows. §

2.6. COROLLARY. Let X be a reflexive and strictly convex Banach space.
If euch closed subspace has a Lipschitz continuous metric projection, then X
is isomorphic to Hilbert space.

This corollary clearly substantiates the Holmes-Kripke conjecture. In
fact, for X to be isomorphic to Hilbert space, it is only necessary that (*)
hold for each closed subspace K (and not every closed convex set K} and
the constant / in (*) may depend on the approximating subspace K (and
not be universal for all X).
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3. CHARACTERIZATIONS OF CONTINUOUS, POINTWISE LIPSCHITZ
CONTINUOUS, AND LiPscHITZ CONTINUOUS METRIC SELECTIONS

Our first result shows that for a general class of set-valued mappings
(which includes metric projections), the existence of a selection satisfying
any one of the three continuity properties being considered is equivalent to
the existence of one which is also homogeneous.

3.1. LeMMA. Ler F: X - #(Y) be bounded and homogeneous. Then the
Jollowing statements are equivalent:

(1) F has a (continuous, pointwise Lipschitz continuous, Lipschitz
continuous) selection;

(2) F has a (continuous, pointwise Lipschitz continuous, Lipschitz con-
tinuous) selection which is homogeneous.

Proof. It suffices to prove (1)=(2). Let F have a (continuous,
pointwise Lipschitz continuous, Lipschitz continuous) selection f. Define f
on X by

3 Il DA/ XDy = f(=x/l1x11)] if x#0
Y(X)—{O if x=0.

Clearly, fis odd (i.e., f(—x)= —f(x)) and

I7<clxl,  xeX,

since || f(x)[ €c¢ ||x||. (Here ¢ is the constant of Relation (1.3) appearing in
the definition of boundedness of F.)
Since F is homogeneous, F(0)= {0} so f(0)=0e F(0). If x#0, then
JO) =S 1xl £/ llx) = 5 1D (= x/ %1y
€ 3 lxll FOx/ixll) — 5 hxll F(—x/lx1)
=3F(x)+ 3F(x)=F(x)

since F(x) is convex. Thus fis an odd selection for F.
Next suppose x #0. If >0, then

1

Flax) =3 laxll [f(ax/llax]]) — f(—ax/ljox!])]

Ixil LA (x/ilxI) = fF(—=x/llx1)] = 2f(x).

]

2
2
2
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If x<0, then —x>0 and since fis odd, we get

Jlax)=F((=a)(—x)) = —of (—x) =xf(x).

Thus 7 is a homogencous selection for F.

It remains to show that f'is (continuous, pointwise Lipschitz continuous,
Lipschitz continuous).

Assume first that f'is pointwise Lipschitz continuous. Then for each xe X
there exists A(x) >0 such that

)= <Ax)lIx—ypi,  reX

We will show that f is pointwisc Lipschitz continuous.
Fix any xe X\ {0}. Then for each ye X\ {0}, we have

Gl Y = £y < A/l ) '—“—ﬁw
1 1
</‘.(x/'.|xi|)[ lx—yli + - 'i)v’!l]
| =il
-
<2/l e = v

x|l

Replacing x and y with their negatives in this inequality, we obtain

IAC=x/1x1) = S (=374 DT < 2A(=x/ i x}

i
) o fx— yil.
x|

From these two inequalities, we deduce
| el = T/l D
I . . .
< 3 I/ (x/ xd) = S/ iy DI + I'f(—X,/HX'u!)-/(—y/l’.ylilil

1
< [A(x/llxll) + AC—x/| YII)]W [x— yll.

Finally, using the latter inequality, we obtain
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17 (75) - 117 ()
7)1 () |- |7(55)]
<[4(7g)+4 () |+ er-n

=7(x) lx~ yl,

17Ge) = F(ol =

< x|

where Z(x) := A (x/|x||) + A(—x/|x]|) + ¢. Also,
I7Ge) = 7O = [ 7 < ¢ x| < A(x) l1x]).

Thus 7 is pointwise Lipschitz continuous at x with constant 1(x).
Since for all ye X,

I70) =7l =17 <c iyl =:20) Iy,

we see that 7 is pointwise Lipschitz continuous.
This argument also proves that 7 is Lipschitz continuous (with Lipschitz
constant 1 =24+ ¢) whenever f is Lipschitz continuous (with constant A).
Finally, the argument that 7 is continuous if f is continuous is a simple
exercise. ||

Remark. Tt is worth noting that if S=S(X)={xeX| x| =1}, our
proof actually shows that Statement (2) is equivalent to

(1) F|s has a (continuous, pointwise Lipschitz continuous, Lipschitz
continuous) selection.

Let M be a proximinal subspace of X. The quotient space X/M is
normed as usual by

lx+ M| := d(x, M).

Let F: X — o (X) be a “submap” of P,, (ie., F(x)c P(x) for every x)
which is additive modulo M. We define a mapping F on X/M by

F(x+ M) := x— F(x), xeX.

(To see that F is well-defined, let x+ M =y + M. Then m:= x— yeM
and since F is additive modulo M,

x—F(x)=y+m—Fy+m)=y—Fy).)
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The next technical lemma is the key element in the main results of this
section.

3.2. Lemma. Let M be a proximinal subspace of X and suppose thai
F: X - #(X) is a submap of P,, which is homogeneous and additive modulo
M. Then

(1) F is homogeneous, bounded, and F: X/M — #(X).

(2) F has a (continuous, pointwise Lipschitz continuous, Lipschitz con-
tinuous) selection which is homogeneous and additive modulo M if and only
if F has a (continuous, pointwise Lipschitz continuous, Lipschitz continuous)
selection.

(3) F is lower semicontinuous if and only If F is lower semicontinuous.

Proof. (1) Since F is homogeneous, for any xe R,

Fla(x+ M)] = Flax + M) = ax — F(ax)
=a[x— F(x)]=2F(x+ M)
so F is homogeneous. To see that Fis bounded, let x X and y € F(x + M).
Then y=x~— y, for some y,€ F(x)<= P,,(x). Hence
Iyl =lix = yolt = fix + M.
That is,

sup{liyll |yeF(x+ M)} =|x+ M|

and F is bounded. Finally, since F(x)e #(X), F(x+ M)e #(X).

(2) Suppose F has a (continuous, pointwise Lipschitz continuous,
Lipschitz continuous) selection f which is homogeneous and additive
modulo M. Define f on X/M by

fx+M)=x—f(x), xeX.

By (1), 7 is well-defined, bounded, homogeneous, and f: X/M — #°(X).
Furthermore, 7 is a selection for F.

If fis pointwise Lipschitz continuous, then for each xe X there exists
/(x)> 0 such that

1) =fOIIN<alx)Ix—xll,  yeX

Then, for any me M,
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17 (e + M) = F(y+ M) = lIx~ f(x)~ (y— F(W)I
=lx=y—m—[f(x)—f(y+m)]l
<lx=y—m| +|f(x)—f(y+m)]
<[+Ax)] 1x—y—m|.

Taking the infimum over all me M, we obtain
17 (x + M) = F(y+ M) < (1 + Mx)) d(x— y, M)
=(1+i(x)) llx+M—(y+ M)|.
Thus f is pointwise Lipschitz continuous. In particular, if f is Lipschitz
continuous, so is f.

Now suppose f'is continuous and x,+ M — x + M, ie., d(x,—x, M)— Q.
Select m, e M so that x,—x—m, - 0 or x,,—m, — x. Then

f('xn+M)=xn'—f(xn)=xn_mn—f(xn_mn)
- x— f(x)=J(x+ M)

implies that fis continuous.

For the converse, let 7 be a (continuous, pointwise Lipschitz continuous,
Lipschitz continuous) selection for F. By Lemma 3.1, we may assume 7 is
homogeneous. Define f on X by

f(x):= x—F(x+ M), xeX.

Then fis a selection for F which is homogeneous. Further, for any me M,
fx+m)=x+m—fx+m+M)=x+m—f(x+ M)
=f(x)+m
so fis additive modulo M.

The proof that f is (continuous, pointwise Lipschitz continuous,
Lipschitz continuous) is similar to the first part of the proof.

(3) Let F be lower semicontinuous. Then for any x e X, y € F(x), and
X,—x, we have that d(y, F(x,))—0. To show that F is lower semi-
continuous, let xe X, x,+ M — x + M, and y € F(x + M). We need to verify
that d(y, F(x,+ M))—0. Select m,c M such that x,—m,—x. Then
y=Xx—y, for some y,€ F(x), so

d(y’ F(xn_'—M)):d(y’ xn—F(xn))
=d(x_y05 xn_mn_F('xn—mn))
< ”xn—mn—x“ +d(J’o, F(xn—mn))

— 0 as n— o0.
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Conversely, let F b lower semicontinuous, x, - x, and ve F(x). Then
x,+ M- x+ M and x — ye F(x + M) implics that

d(y, F(x,))=d(—y, —F(x,)) =d(x— y, x — F(x,))
=d(x—y, x—x,+x,— F(x,))
=d(x— y, x—x,+ F(x,+ M))
< llx = x| + dlx = y, Fx, + M) =0,
so F is lower semicontinuous. ||

A subset N of X is called homogeneous if aN < N for cach aeR. If M is
a proximinal subspace of X and N is a subset (not necessarily a subspace)
of X, we will write

X=M®N

to mean that each xe X has a unique representation as x =m + n, where
me M and ne N.

Recall that the quotient map Q=Q,: X - X/M, defined by
Q(x)=x+ M, is linear, Qx| <|x| for every x, and Qx| =]x! for each
xeker P,,. In particular, for any subset N of X, the restriction mapping
Q| is Lipschitz continuous.

A homeomorphism f between two metric spaces is called a Lipschitz
(resp. pointwise Lipschitz) homeomorphism provided that both f and f !
are Lipschitz (resp. pointwise Lipschitz) continuous.

We can now characterize when the metric projection has a selection
having one of three continuity properties and which is also homogeneous
and additive modulo M.

3.3. THEOREM. For a proximinal subspace M of the normed linear space
X, the following statements are equivalent:

(1) P, has a (continuous, pointwise Lipschitz continuous, Lipschiiz
continuous) selection which is homogeneous and additive modulo M;

(2y ker P,, contains a closed homogeneous subset N such that
X=M®N and the mapping p(m+n)=m is (continuous, pointwise
Lipschitz continuous, Lipschitz continuousy,

(3) ker P, contains a closed homogeneous subset N such that Q| is
a (homeomorphism, pointwise Lipschitz  homeomorphism, Lipschitz
homeomorphism) between N and X/M.

Moreoter, the desired selection is given by p if (2) holds and by
x> x—(Qx) 7 (x+ M) if (3) holds.
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Proof. (1)=(2). Let p be a (continuous, pointwise Lipschitz con-
tinuous, Lipschitz continuous) selection for P,, which is homogeneous and
additive modulo M. Let N= p~!(0). Then N is closed, homogeneous, and
N c ker P,,. Also, for each x e X,

p(x— p(x))= p(x) — p(x)=0,
s0 x— p(x)e N and x= p(x)+ (x — p(x)). This shows that X=M+ N. If
x=m+n for some me M and ne N, then

p(x)=p(m+n)=pn)+m=m

and n=x— p(x). Thus the representation of x is unique and hence
X =M@ N. Since the mapping m + n— m is just p, Statement (2) follows.

(2)=(3). Suppose ker P,, contains a closed homogeneous subset N
such that X=M® N and the map p(m+n)=n is (continuous, pointwise
Lipschitz continuous, Lipschitz continuous). First note that p is homo-
geneous and additive modulo M. Also, x — p(x)€ N for every x so

lx = p(x)ll = d(x — p(x), M) =d(x, M).

That is, p is a selection for P,,. By Part (2) of Lemma 3.2, with F= p, we
see that p is (continuous, pointwise Lipschitz continuous, Lipschitz con-
tinuous).

Claim. Q|n: N — X/M is bijective and (Q|,) '=p.

Assuming the claim is true, then since Q|, is Lipschitz continuous,
Statement (3) follows. Thus it remains to verify the claim.

To verify that Q|, is injective, let n,e N (i=1,2) and Q(n,)=Q(n,).
Thenn, + M=n,+ M som:= n,—n,e M and n, = m + n,. By uniqueness
of the representation for n,, n, =n, and m=0. Thus Q| is injective. For
any x€ X, x=m+ n for some me M, ne N, Thus

x+M=n+ M=Q0(n),

so Q| Is surjective, hence bijective.
Next note that for any xe X, x — p(x)e N and

OQx—px)=x—px)+ M=x+ M.
Hence
(Qln) ' (x+ M)=x—p(x)=p(x+ M).

That is, (Q|~) '=p and the claim is verified.
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(3)=(1). Suppose that ker P, contains a closed homogeneous
subset N such that Q|y is a (homeomorphism, pointwise Lipschitz
homeomorphism, Lipschitz homeomorphism) between N and X/M. Define

p(x)i= x—(0ly) "(x+M), xeX.
Claim. p is a selection for P,, which is homogeneous and additive
modulo M.

Assuming the claim is true for the moment, we sec that j=(Q|y) "
Hence by Part (2) of Lemma 3.2, we deduce that p is (continuous,
pointwise Lipschitz continuous, Lipschitz continuous). Therefore, to
establish (1), it suffices to verifiy the claim.

For any xe X, x— p(x)={(Q|~) '(x+ M)e N and, for any me M,

px+m)=x+m—(Q|y) ' (x+m+ M)
=x+m—(Qly) "(x+M)=p(x)+m,

so p is additive modulo M. Since x — p(x)e N,
Qlx—p(x)y=x—plx)+ M
implies
Q137" (x=p(x)+ M)=x—p(x)=(Q|y) ™" (x + M).
Since Q! is injective, x — p(x)+ M =x+ M, so p(x)e M. Also,

lx— p(x) =d(x — p(x), M)=d(x, M)

implies p(x) e P,,(x); i.e., p is a selection for P,,. Finally, the homogeneity
of N implies that (Q1y) ', hence p, is homogeneous. This proves the claim.

The last statement of the theorem was established during the course of
the proof. |

We can now state and prove the two main theorems of this section.

3.4. THEOREM. Let M be a proximinal subspace of a Banach space X.
Then the following statements are equivalent:

(1) P, has a continuous selection;

(2) P, has a continuous selection which is homogeneous and additive
modulo M,

(3) ker Py, contains a closed homogeneous subset N such that
X=M®® N and the mapping p(m+ n)=m is continuous;

640/58.3.5
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(4) ker P,, contains a closed homogeneous subset N such that Q| is
a homeomorphism between N and X/M.

Moreover, the continuous selection is given by p if (3) holds and by
X x—(Q1y) " (x+ M) if (4) holds.

Proof. By Theorem 3.3, it suffices to prove the implication (1)=(2).
Thus, suppose P,, has a continuous selection. Define F on X by

F(x):= {p(x)|p is a continuous selection for P, }.

It was noted in [4] that F is the maximal lower semicontinuous submap
of P,,. In particular, F(x)e #(X) for every x.

Claim. F is homogeneous and additive modulo M.

Assuming the claim for the moment, it follows by Part (3) of Lemma 3.2
that F: X/M — #(X) is lower semicontinuous. By the Michael selection
theorem [12], F has a continuous selection. By Part (2) of Lemma 3.2, F
has a continuous selection which is homogeneous and additive modulo M.
Since F is a submap of P,,, this selection is also a selection for P,,. That
is, (2) holds. Thus it remains to prove the claim.

To prove F is homogeneous, fix any aeR, a#0. Note that for any
function p: X — X, we can define p’: X —» X by

1
p(x):= ;p(ocx), xeX.

It is easy to verify that p is a continuous selection for P,, if and only if p’
is. Thus
F(ax)= { p(ax)| p is a continuous selection for P,, }

= {ap’(x)| p’ is a continuous selection for P, }

=a{p'(x)| p' is a continuous selection for P,,}

=aF(x)
implies F is homogeneous.

To show F is additive modulo M, fix any me M. Again note that a

function p: X — X is a continuous selection for P,, if and only if the
function p”: X — X, defined by

p'(x):= p(x+m)—m, xe X,
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is a continuous selection for P,,. Thus

F(x+m)= {p(x + m}| p is a continuous selection for P,,}
= {p"(x)+ m| p” is a continuous selection fr P,,}
= {p"(x)] p" is a continuous selection for P,,} + m

=F(x)+m,
$0 F is additive modulo M. This proves thc claim. |

Fakhouri [6] has proved a related result: P,, has a continuous selection
if and only if the map x+— (x+ M) ker P,, has a continuous sclection
which is homogeneous.

3.5. THEOREM. Let M be a proximinal subspace which is complemented
in the normed linear space X. Then the following statements are equivalent:

(1) P, has a (pointwise) Lipschitz continuous selection;

{(2) P., has a (pointwise) Lipschitz continuous selection which is
homogeneous and additive modulo M,

(3) ker P, contains a closed homogeneous subset N such that
X=M®N and the mapping p(m-+n)=m is (pointwise) Lipschilz con-
tinuous,

(4) ker P,, contains a closed homogeneous subset N such that Q| is
a (pointwise) Lipschitz homeomorphism between N and X/ M.

Moreover, the desired selection is given by p if (3) holds and by
xi=x—(0y)" " (x+ M) if (4) holds.

Proof. By Theorem 3.3, it suffices to verify the implication (1)=-{(2).
Since M is complemented, there exist a closed subspace L in X and a linear
projection P onto M along L. Thus X=M@® L. By Lemma 3.1, the map-
ping F= P, |, has a (pointwise) Lipschitz continuous selection f which is
homogeneous. Define p on X by p=f-(/— P)+ P. It is a simple exercise
to verify that p is a (pointwise) Lipschitz continuous selection for £,,
which is homogeneous and additive modulo M. |

Theorem 3.4 can be strengthened in the particular cases when M is finite-

dimensional or finite-codimensional.

3.6. THEOREM. Let M be a finite-dimensional subspace of the Banach
space X. Then P,, has a continuous selection if and only if ker P,, contains
a closed homogeneous subset N with X =M@ N.

Proof. By Theorem 3.4, it suffices to verify that if ker P,, contains a

640 58.3.5*%
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closed homogeneous subset N with X=M@N, then the mapping
p: X — M defined by p(x)=m, where x =m +n, is continuous.

We first note that p is a selection for P,,. In particular, ||p(x)|| <2 x|
for all x. Fix any x e X and let x, — x. Since { p(x;)} is a bounded sequence
in the finite-dimensional space M, every subsequence of {p(x,)} has a
subsequence which converges:

p(xy) >meM. (3.6.1)

Then x,, — p(x;)—>x—m =:neN since N is closed. Since x =m+n and
this representation is unique, m= p(x) and n=x— p(x). By (3.6.1),
p(xy,) = p(x). It follows that p(x,) — p(x) and p is continuous at x. [ ]

Recall that a set N is called houndedly compact if each bounded sequence
in N has a subsequence which converges to a point in N.

3.7. THEOREM. Let M be a proximinal subspace having finite-codimen-
sion in the Banach space X. Then P,, has a continuous selection if and only
if ker P, contains a boundedly compact homogeneous subset N with
X=M®N.

Proof. Suppose P, has a continuous selection. By Theorem 3.4, ker P,
contains a closed homogeneous subset N such that Q|, is a (norm-
preserving) homeomorphism between N and X/M. Using the one-to-
oneness of Q|y, it is easy to verify that X=M® N. Since dim X/M =
codim M < oo, each bounded sequence in X/M has a convergent
subsequence. It follows that each bounded sequence in N must have a
subsequence converging to a point in N. That is, N is boundedly compact.

Conversely, suppose ker P,, contains a boundedly compact
homogeneous subset N with X=M®N. By the same proof as in
Theorem 3.6, the mapping ¢: X —» N defined by gq(x)=n, x=m+n, is
continuous. Thus p:= J—gq is also continuous and p(m-+n)=m. By
Theorem 3.4, P,, has a continuous selection. |

These results can be further sharpened when M is a Chebyshev subspace.
For this, it is convenient to first make the following observation.

3.8. LemMA. If M is a Chebyshev subspace, Ncker P,,, and
X=M®N, then N=Xker P,,.

Proof. 1If not, choose y eker P, \N. Then y =m + n for some me M and
ne N. Hence

0=Pu(y)=m+Pyln)=m

so y=ne N, a contradiction. ||
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Next recall the well-known result of Cheney and Wulbert.

THrOREM [1]. A closed subspace M is Chebyshev if and only if
X=M®ker P,,.

3.9. COROLLARY. Let M be a Chebyshev subspace which is complemented
in the Banach space X. Then the following statements are equivalent:

(1) P, is (continuous, pointwise Lipschitz continuous, Lipschitz
continuous);

(2) Qlyerp, is a (homeomorphism, pointwise Lipschitz homeo-
morphism, Lipschitz homeomorphism) between ker P,, and X/M.
P 14 14

Proof. This follows by Combining Theorems 3.4 and 3.5, Lemma 1.8,
and the Cheney Wulbert thcorem. ||

That part of Corollary 3.9 pertaining to continuous selections (viz. P,
is continuous if and only if Q. », is @ homecomorphism) was first
established by Holmes [7].

3.10. CororLLARY (Cheney and Wulbert [1]). Let M be a Chebyshev
subspace of finite codimension in the Banach space X. Then P, is continuous
if and only if ker P, is boundedly compact.

Proof. This follows from Theorem 3.7, Lemma 38, and the
Cheney-Wulbert theorem. |
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